897 research outputs found

    Unbounded randomness certification using sequences of measurements

    Get PDF
    Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a single measurement on its share of the system, only a finite amount of randomness, of at most 4log2d4 log_2 d bits, can be certified from a pair of entangled particles of dimension dd. Our work shows that this fundamental limitation can be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular Bell inequality for each measurement in the sequence.Comment: 4 + 5 pages (1 + 3 images), published versio

    Topology of energy surfaces and existence of transversal Poincar\'e sections

    Full text link
    Two questions on the topology of compact energy surfaces of natural two degrees of freedom Hamiltonian systems in a magnetic field are discussed. We show that the topology of this 3-manifold (if it is not a unit tangent bundle) is uniquely determined by the Euler characteristic of the accessible region in configuration space. In this class of 3-manifolds for most cases there does not exist a transverse and complete Poincar\'e section. We show that there are topological obstacles for its existence such that only in the cases of S1×S2S^1\times S^2 and T3T^3 such a Poincar\'e section can exist.Comment: 10 pages, LaTe

    DNA-PAINT MINFLUX nanoscopy

    Get PDF
    MINimal fluorescence photon FLUXes (MINFLUX) nanoscopy, providing photon-efficient fluorophore localizations, has brought about three-dimensional resolution at nanometer scales. However, by using an intrinsic on–off switching process for single fluorophore separation, initial MINFLUX implementations have been limited to two color channels. Here we show that MINFLUX can be effectively combined with sequentially multiplexed DNA-based labeling (DNA-PAINT), expanding MINFLUX nanoscopy to multiple molecular targets. Our method is exemplified with three-color recordings of mitochondria in human cells

    Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method

    Get PDF
    We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; EspañaFil: Bourantas, George C.. University of Western Australia; AustraliaFil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Joldes, Grand R.. University of Western Australia; AustraliaFil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; AustraliaFil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; EspañaFil: Wittek, Adam. University of Western Australia; Australi

    Networks of reliable reputations and cooperation: a review

    Full text link
    Reputation has been shown to provide an informal solution to the problem of cooperation in human societies. After reviewing models that connect reputations and cooperation, we address how reputation results from information exchange embedded in a social network that changes endogenously itself. Theoretical studies highlight that network topologies have different effects on the extent of cooperation, since they can foster or hinder the flow of reputational information. Subsequently, we review models and empirical studies that intend to grasp the coevolution of reputations, cooperation and social networks. We identify open questions in the literature concerning how networks affect the accuracy of reputations, the honesty of shared information and the spread of reputational information. Certain network topologies may facilitate biased beliefs and intergroup competition or in-group identity formation that could lead to high cooperation within but conflicts between different subgroups of a network. Our review covers theoretical, experimental and field studies across various disciplines that target these questions and could explain how the dynamics of interactions and reputations help or prevent the establishment and sustainability of cooperation in small- and large-scale societies

    Charged rho meson production in neutrino-induced reactions at E_nu = 10 GeV

    Full text link
    The neutrinoproduction of charged ρ\rho mesons on nuclei and nucleons is investigated for the first time at moderate energies ( \approx 10 GeV), using the date obtained with SKAT bubble chamber. No strong nuclear effects are observed in ρ+\rho^+ and ρ\rho^- production. The fractions of charged and neutral pions originating from ρ\rho decays are obtained and compared with higher energy data. From analysis of the obtained and available data on ρ+\rho^+ and K+K^{*+}(892) neutrinoproduction, the strangeness suppression factor in the quark string fragmentation is extracted: λs=0.18±0.03\lambda_s = 0.18\pm0.03. Estimations are obtained for cross sections of quasiexclusive single ρ+\rho^+ and coherent ρ+\rho^+ neutrinoproduction on nuclei. The estimated coherent cross section σρ+coh\sigma_{\rho^+}^{coh} = (0.29±0.16)1038\pm0.16)\cdot 10^{-38} cm2^2 is compatible with theoretical predictions.Comment: 7 pages, 6 figure
    corecore